Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Biol ; 22(1): 16, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273363

RESUMO

BACKGROUND: Understanding genome organization and evolution is important for species involved in transmission of human diseases, such as mosquitoes. Anophelinae and Culicinae subfamilies of mosquitoes show striking differences in genome sizes, sex chromosome arrangements, behavior, and ability to transmit pathogens. However, the genomic basis of these differences is not fully understood. METHODS: In this study, we used a combination of advanced genome technologies such as Oxford Nanopore Technology sequencing, Hi-C scaffolding, Bionano, and cytogenetic mapping to develop an improved chromosome-scale genome assembly for the West Nile vector Culex quinquefasciatus. RESULTS: We then used this assembly to annotate odorant receptors, odorant binding proteins, and transposable elements. A genomic region containing male-specific sequences on chromosome 1 and a polymorphic inversion on chromosome 3 were identified in the Cx. quinquefasciatus genome. In addition, the genome of Cx. quinquefasciatus was compared with the genomes of other mosquitoes such as malaria vectors An. coluzzi and An. albimanus, and the vector of arboviruses Ae. aegypti. Our work confirms significant expansion of the two chemosensory gene families in Cx. quinquefasciatus, as well as a significant increase and relocation of the transposable elements in both Cx. quinquefasciatus and Ae. aegypti relative to the Anophelines. Phylogenetic analysis clarifies the divergence time between the mosquito species. Our study provides new insights into chromosomal evolution in mosquitoes and finds that the X chromosome of Anophelinae and the sex-determining chromosome 1 of Culicinae have a significantly higher rate of evolution than autosomes. CONCLUSION: The improved Cx. quinquefasciatus genome assembly uncovered new details of mosquito genome evolution and has the potential to speed up the development of novel vector control strategies.


Assuntos
Aedes , Culex , Animais , Humanos , Masculino , Filogenia , Elementos de DNA Transponíveis/genética , Mosquitos Vetores/genética , Culex/genética , Aedes/genética , Cromossomos , Evolução Molecular
3.
New Phytol ; 241(4): 1780-1793, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38058244

RESUMO

Gray leaf spot (GLS) caused by Cercospora zeina or C. zeae-maydis is a major maize disease throughout the world. Although more than 100 QTLs resistant against GLS have been identified, very few of them have been cloned. Here, we identified a major resistance QTL against GLS, qRglsSB, explaining 58.42% phenotypic variation in SB12×SA101 BC1 F1 population. By fine-mapping, it was narrowed down into a 928 kb region. By using transgenic lines, mutants and complementation lines, it was confirmed that the ZmWAK02 gene, encoding an RD wall-associated kinase, is the responsible gene in qRglsSB resistant against GLS. The introgression of the ZmWAK02 gene into hybrid lines significantly improves their grain yield in the presence of GLS pressure and does not reduce their grain yield in the absence of GLS. In summary, we cloned a gene, ZmWAK02, conferring large effect of GLS resistance and confirmed its great value in maize breeding.


Assuntos
Ascomicetos , Zea mays , Zea mays/genética , Ascomicetos/genética , Melhoramento Vegetal , Locos de Características Quantitativas/genética , Doenças das Plantas/genética , Resistência à Doença/genética
5.
Plant Genome ; 16(4): e20382, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37749941

RESUMO

Complete, gapless telomere-to-telomere chromosome assemblies are a prerequisite for comprehensively investigating the architecture of complex regions, like centromeres or telomeres and removing uncertainties in the order, spacing, and orientation of genes. Using complementary genomics technologies and assembly algorithms, we developed highly contiguous, nearly gapless, genome assemblies for two economically important soybean [Glycine max (L.) Merr] cultivars (Williams 82 and Lee). The centromeres were distinctly annotated on all the chromosomes of both assemblies. We further found that the canonical telomeric repeats were present at the telomeres of all chromosomes of both Williams 82 and Lee genomes. A total of 10 chromosomes in Williams 82 and eight in Lee were entirely reconstructed in single contigs without any gap. Using the combination of ab initio prediction, protein homology, and transcriptome evidence, we identified 58,287 and 56,725 protein-coding genes in Williams 82 and Lee, respectively. The genome assemblies and annotations will serve as a valuable resource for studying soybean genomics and genetics and accelerating soybean improvement.


Assuntos
Genoma , Glycine max , Glycine max/genética , Genômica , Algoritmos
6.
Commun Biol ; 6(1): 902, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667032

RESUMO

High-quality reference genome assemblies, representative of global heterotic patterns, offer an ideal platform to accurately characterize and utilize genetic variation in the primary gene pool of hybrid crops. Here we report three platinum grade de-novo, near gap-free, chromosome-level reference genome assemblies from the active breeding germplasm in pearl millet with a high degree of contiguity, completeness, and accuracy. An improved Tift genome (Tift23D2B1-P1-P5) assembly has a contig N50 ~ 7,000-fold (126 Mb) compared to the previous version and better alignment in centromeric regions. Comparative genome analyses of these three lines clearly demonstrate a high level of collinearity and multiple structural variations, including inversions greater than 1 Mb. Differential genes in improved Tift genome are enriched for serine O-acetyltransferase and glycerol-3-phosphate metabolic process which play an important role in improving the nutritional quality of seed protein and disease resistance in plants, respectively. Multiple marker-trait associations are identified for a range of agronomic traits, including grain yield through genome-wide association study. Improved genome assemblies and marker resources developed in this study provide a comprehensive framework/platform for future applications such as marker-assisted selection of mono/oligogenic traits as well as whole-genome prediction and haplotype-based breeding of complex traits.


Assuntos
Pennisetum , Pennisetum/genética , Embaralhamento de DNA , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Agricultura
7.
Arch Insect Biochem Physiol ; 114(3): e22049, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37608635

RESUMO

The house fly, Musca domestica, is a pest of livestock, transmits pathogens of human diseases, and is a model organism in multiple biological research areas. The first house fly genome assembly was published in 2014 and has been of tremendous use to the community of house fly biologists, but that genome is discontiguous and incomplete by contemporary standards. To improve the house fly reference genome, we sequenced, assembled, and annotated the house fly genome using improved techniques and technologies that were not available at the time of the original genome sequencing project. The new genome assembly is substantially more contiguous and complete than the previous genome. The new genome assembly has a scaffold N50 of 12.46 Mb, which is a 50-fold improvement over the previous assembly. In addition, the new genome assembly is within 1% of the estimated genome size based on flow cytometry, whereas the previous assembly was missing nearly one-third of the predicted genome sequence. The improved genome assembly has much more contiguous scaffolds containing large gene families. To provide an example of the benefit of the new genome, we used it to investigate tandemly arrayed immune gene families. The new contiguous assembly of these loci provides a clearer picture of the regulation of the expression of immune genes, and it leads to new insights into the selection pressures that shape their evolution.

8.
Nat Plants ; 9(9): 1558-1571, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37563457

RESUMO

Nicotiana benthamiana is an invaluable model plant and biotechnology platform with a ~3 Gb allotetraploid genome. To further improve its usefulness and versatility, we have produced high-quality chromosome-level genome assemblies, coupled with transcriptome, epigenome, microRNA and transposable element datasets, for the ubiquitously used LAB strain and a related wild accession, QLD. In addition, single nucleotide polymorphism maps have been produced for a further two laboratory strains and four wild accessions. Despite the loss of five chromosomes from the ancestral tetraploid, expansion of intergenic regions, widespread segmental allopolyploidy, advanced diploidization and evidence of recent bursts of Copia pseudovirus (Copia) mobility not seen in other Nicotiana genomes, the two subgenomes of N. benthamiana show large regions of synteny across the Solanaceae. LAB and QLD have many genetic, metabolic and phenotypic differences, including disparate RNA interference responses, but are highly interfertile and amenable to genome editing and both transient and stable transformation. The LAB/QLD combination has the potential to be as useful as the Columbia-0/Landsberg errecta partnership, utilized from the early pioneering days of Arabidopsis genomics to today.


Assuntos
Arabidopsis , Nicotiana , Nicotiana/genética , Multiômica , Sintenia , Genômica , Biotecnologia , Arabidopsis/genética , Genoma de Planta
9.
G3 (Bethesda) ; 13(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37002915

RESUMO

Poa pratensis, commonly known as Kentucky bluegrass, is a popular cool-season grass species used as turf in lawns and recreation areas globally. Despite its substantial economic value, a reference genome had not previously been assembled due to the genome's relatively large size and biological complexity that includes apomixis, polyploidy, and interspecific hybridization. We report here a fortuitous de novo assembly and annotation of a P. pratensis genome. Instead of sequencing the genome of a C4 grass, we accidentally sampled and sequenced tissue from a weedy P. pratensis whose stolon was intertwined with that of the C4 grass. The draft assembly consists of 6.09 Gbp with an N50 scaffold length of 65.1 Mbp, and a total of 118 scaffolds, generated using PacBio long reads and Bionano optical map technology. We annotated 256K gene models and found 58% of the genome to be composed of transposable elements. To demonstrate the applicability of the reference genome, we evaluated population structure and estimated genetic diversity in P. pratensis collected from three North American prairies, two in Manitoba, Canada and one in Colorado, USA. Our results support previous studies that found high genetic diversity and population structure within the species. The reference genome and annotation will be an important resource for turfgrass breeding and study of bluegrasses.


Assuntos
Melhoramento Vegetal , Poa , Genoma , Poa/genética , Plantas Daninhas/genética , Sequência de Bases , Anotação de Sequência Molecular
10.
Mol Plant Pathol ; 24(7): 742-757, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36929631

RESUMO

Plant pathogens cause significant crop loss worldwide, and new resistance genes deployed to combat diseases can be overcome quickly. Understanding the existing resistance gene diversity within the germplasm of major crops, such as maize, is crucial for the development of new disease-resistant varieties. We analysed the nucleotide-binding leucine-rich repeat receptors (NLRs) of 26 recently sequenced diverse founder lines from the maize nested association mapping (NAM) population and compared them to the R gene complement present in a wild relative of maize, Zea luxurians. We found that NLRs in both species contain a large diversity of atypical integrated domains, including many domains that have not previously been found in the NLRs of other species. Additionally, the single Z. luxurians genome was found to have greater integrated atypical domain diversity than all 26 NAM founder lines combined, indicating that this species may represent a rich source of novel resistance genes. NLRs were also found to have very high sequence diversity and presence-absence variation among the NAM founder lines, with a large NLR cluster on Chr10 representing a diversity hotspot. Additionally, NLRs were shown to be mobile within maize genomes, with several putative interchromosomal translocations identified.


Assuntos
Plantas , Zea mays , Zea mays/genética
11.
Nat Commun ; 14(1): 1567, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944612

RESUMO

Understanding and exploiting genetic diversity is a key factor for the productive and stable production of rice. Here, we utilize 73 high-quality genomes that encompass the subpopulation structure of Asian rice (Oryza sativa), plus the genomes of two wild relatives (O. rufipogon and O. punctata), to build a pan-genome inversion index of 1769 non-redundant inversions that span an average of ~29% of the O. sativa cv. Nipponbare reference genome sequence. Using this index, we estimate an inversion rate of ~700 inversions per million years in Asian rice, which is 16 to 50 times higher than previously estimated for plants. Detailed analyses of these inversions show evidence of their effects on gene expression, recombination rate, and linkage disequilibrium. Our study uncovers the prevalence and scale of large inversions (≥100 bp) across the pan-genome of Asian rice and hints at their largely unexplored role in functional biology and crop performance.


Assuntos
Oryza , Oryza/genética , Análise de Sequência de DNA , Genoma de Planta/genética , Evolução Biológica , Filogenia
12.
G3 (Bethesda) ; 13(3)2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36611193

RESUMO

High-quality genome assemblies are characterized by high-sequence contiguity, completeness, and a low error rate, thus providing the basis for a wide array of studies focusing on natural species ecology, conservation, evolution, and population genomics. To provide this valuable resource for conservation projects and comparative genomics studies on gyrfalcon (Falco rusticolus), we sequenced and assembled the genome of this species using third-generation sequencing strategies and optical maps. Here, we describe a highly contiguous and complete genome assembly comprising 20 scaffolds and 13 contigs with a total size of 1.193 Gbp, including 8,064 complete Benchmarking Universal Single-Copy Orthologs (BUSCOs) of the total 8,338 BUSCO groups present in the library aves_odb10. Of these BUSCO genes, 96.7% were complete, 96.1% were present as a single copy, and 0.6% were duplicated. Furthermore, 0.8% of BUSCO genes were fragmented and 2.5% (210) were missing. A de novo search for transposable elements (TEs) identified 5,716 TEs that masked 7.61% of the F. rusticolus genome assembly when combined with publicly available TE collections. Long interspersed nuclear elements, in particular, the element Chicken-repeat 1 (CR1), were the most abundant TEs in the F. rusticolus genome. A de novo first-pass gene annotation was performed using 293,349 PacBio Iso-Seq transcripts and 496,195 transcripts derived from the assembly of 42,429,525 Illumina PE RNA-seq reads. In all, 19,602 putative genes, of which 59.31% were functionally characterized and associated with Gene Ontology terms, were annotated. A comparison of the gyrfalcon genome assembly with the publicly available assemblies of the domestic chicken (Gallus gallus), zebra finch (Taeniopygia guttata), and hummingbird (Calypte anna) revealed several genome rearrangements. In particular, nine putative chromosome fusions were identified in the gyrfalcon genome assembly compared with those in the G. gallus genome assembly. This genome assembly, its annotation for TEs and genes, and the comparative analyses presented, complement and strength the base of high-quality genome assemblies and associated resources available for comparative studies focusing on the evolution, ecology, and conservation of Aves.


Assuntos
Cromossomos , Genômica , Anotação de Sequência Molecular , Elementos de DNA Transponíveis
13.
Mol Plant Pathol ; 24(7): 758-767, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36180934

RESUMO

Northern corn leaf blight, caused by the fungal pathogen Exserohilum turcicum, is a major disease of maize. The first major locus conferring resistance to E. turcicum race 0, Ht1, was identified over 50 years ago, but the underlying gene has remained unknown. We employed a map-based cloning strategy to identify the Ht1 causal gene, which was found to be a coiled-coil nucleotide-binding, leucine-rich repeat (NLR) gene, which we named PH4GP-Ht1. Transgenic testing confirmed that introducing the native PH4GP-Ht1 sequence to a susceptible maize variety resulted in resistance to E. turcicum race 0. A survey of the maize nested association mapping genomes revealed that susceptible Ht1 alleles had very low to no expression of the gene. Overexpression of the susceptible B73 allele, however, did not result in resistant plants, indicating that sequence variations may underlie the difference between resistant and susceptible phenotypes. Modelling of the PH4GP-Ht1 protein indicated that it has structural homology to the Arabidopsis NLR resistance gene ZAR1, and probably forms a similar homopentamer structure following activation. RNA sequencing data from an infection time course revealed that 1 week after inoculation there was a threefold reduction in fungal biomass in the PH4GP-Ht1 transgenic plants compared to wild-type plants. Furthermore, PH4GP-Ht1 transgenics had significantly more inoculation-responsive differentially expressed genes than wild-type plants, with enrichment seen in genes associated with both defence and photosynthesis. These results demonstrate that the NLR PH4GP-Ht1 is the causal gene underlying Ht1, which represents a different mode of action compared to the previously reported wall-associated kinase northern corn leaf blight resistance gene Htn1/Ht2/Ht3.


Assuntos
Ascomicetos , Leucina/genética , Ascomicetos/fisiologia , Fenótipo , Zea mays/microbiologia , Nucleotídeos , Doenças das Plantas/microbiologia , Resistência à Doença/genética
14.
Nucleic Acids Res ; 50(21): 12309-12327, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36453992

RESUMO

Although long-read sequencing can often enable chromosome-level reconstruction of genomes, it is still unclear how one can routinely obtain gapless assemblies. In the model plant Arabidopsis thaliana, other than the reference accession Col-0, all other accessions de novo assembled with long-reads until now have used PacBio continuous long reads (CLR). Although these assemblies sometimes achieved chromosome-arm level contigs, they inevitably broke near the centromeres, excluding megabases of DNA from analysis in pan-genome projects. Since PacBio high-fidelity (HiFi) reads circumvent the high error rate of CLR technologies, albeit at the expense of read length, we compared a CLR assembly of accession Eyach15-2 to HiFi assemblies of the same sample. The use of five different assemblers starting from subsampled data allowed us to evaluate the impact of coverage and read length. We found that centromeres and rDNA clusters are responsible for 71% of contig breaks in the CLR scaffolds, while relatively short stretches of GA/TC repeats are at the core of >85% of the unfilled gaps in our best HiFi assemblies. Since the HiFi technology consistently enabled us to reconstruct gapless centromeres and 5S rDNA clusters, we demonstrate the value of the approach by comparing these previously inaccessible regions of the genome between the Eyach15-2 accession and the reference accession Col-0.


Assuntos
Arabidopsis , Análise de Sequência de DNA , Arabidopsis/genética , Sequenciamento de Nucleotídeos em Larga Escala , Centrômero/genética , DNA Ribossômico
15.
New Phytol ; 235(6): 2454-2465, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35708662

RESUMO

Fruit development has been central in the evolution and domestication of flowering plants. In common bean (Phaseolus vulgaris), the principal global grain legume staple, two main production categories are distinguished by fibre deposition in pods: dry beans, with fibrous, stringy pods; and stringless snap/green beans, with reduced fibre deposition, which frequently revert to the ancestral stringy state. Here, we identify genetic and developmental patterns associated with pod fibre deposition. Transcriptional, anatomical, epigenetic and genetic regulation of pod strings were explored through RNA-seq, RT-qPCR, fluorescence microscopy, bisulfite sequencing and whole-genome sequencing. Overexpression of the INDEHISCENT ('PvIND') orthologue was observed in stringless types compared with isogenic stringy lines, associated with overspecification of weak dehiscence-zone cells throughout the pod vascular sheath. No differences in DNA methylation were correlated with this phenotype. Nonstringy varieties showed a tandemly direct duplicated PvIND and a Ty1-copia retrotransposon inserted between the two repeats. These sequence features are lost during pod reversion and are predictive of pod phenotype in diverse materials, supporting their role in PvIND overexpression and reversible string phenotype. Our results give insight into reversible gain-of-function mutations and possible genetic solutions to the reversion problem, of considerable economic value for green bean production.


Assuntos
Phaseolus , Domesticação , Duplicação Gênica , Phaseolus/genética , Fenótipo , Retroelementos/genética
16.
Glob Food Sec ; 33: 100619, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35282386

RESUMO

Severe price spikes of the major grain commodities and rapid expansion of cultivated area in the past two decades are symptoms of a severely stressed global food supply. Scientific discovery and improved agricultural productivity are needed and are enabled by unencumbered access to, and use of, genetic sequence data. In the same way the world witnessed rapid development of vaccines for COVID-19, genetic sequence data afford enormous opportunities to improve crop production. In addition to an enabling regulatory environment that allowed for the sharing of genetic sequence data, robust funding fostered the rapid development of coronavirus diagnostics and COVID-19 vaccines. A similar level of commitment, collaboration, and cooperation is needed for agriculture.

17.
Mol Plant ; 15(5): 904-912, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35032688

RESUMO

Southern corn rust (SCR), caused by the fungal pathogen Puccinia polysora, is a major threat to maize production worldwide. Efficient breeding and deployment of resistant hybrids are key to achieving durable control of SCR. Here, we report the molecular cloning and characterization of RppC, which encodes an NLR-type immune receptor and is responsible for a major SCR resistance quantitative trait locus. Furthermore, we identified the corresponding avirulence effector, AvrRppC, which is secreted by P. polysora and triggers RppC-mediated resistance. Allelic variation of AvrRppC directly determines the effectiveness of RppC-mediated resistance, indicating that monitoring of AvrRppC variants in the field can guide the rational deployment of RppC-containing hybrids in maize production. Currently, RppC is the most frequently deployed SCR resistance gene in China, and a better understanding of its mode of action is critical for extending its durability.


Assuntos
Basidiomycota , Zea mays , Mapeamento Cromossômico , Resistência à Doença/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Zea mays/genética , Zea mays/microbiologia
18.
Nat Commun ; 12(1): 6263, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34741017

RESUMO

Phytophthora root and stem rot caused by P. sojae is a destructive soybean soil-borne disease found worldwide. Discovery of genes conferring broad-spectrum resistance to the pathogen is a need to prevent the outbreak of the disease. Here, we show that soybean Rps11 is a 27.7-kb nucleotide-binding site-leucine-rich repeat (NBS-LRR or NLR) gene conferring broad-spectrum resistance to the pathogen. Rps11 is located in a genomic region harboring a cluster of large NLR genes of a single origin in soybean, and is derived from rounds of unequal recombination. Such events result in promoter fusion and LRR expansion that may contribute to the broad resistance spectrum. The NLR gene cluster exhibits drastic structural diversification among phylogenetically representative varieties, including gene copy number variation ranging from five to 23 copies, and absence of allelic copies of Rps11 in any of the non-Rps11-donor varieties examined, exemplifying innovative evolution of NLR genes and NLR gene clusters.


Assuntos
Genes de Plantas , Glycine max/crescimento & desenvolvimento , Glycine max/imunologia , Proteínas NLR/metabolismo , Phytophthora/patogenicidade , Doenças das Plantas/imunologia , Mapeamento Cromossômico/métodos , Variações do Número de Cópias de DNA , Resistência à Doença , Proteínas NLR/genética , Phytophthora/isolamento & purificação , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Glycine max/metabolismo
19.
Science ; 373(6555): 655-662, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34353948

RESUMO

We report de novo genome assemblies, transcriptomes, annotations, and methylomes for the 26 inbreds that serve as the founders for the maize nested association mapping population. The number of pan-genes in these diverse genomes exceeds 103,000, with approximately a third found across all genotypes. The results demonstrate that the ancient tetraploid character of maize continues to degrade by fractionation to the present day. Excellent contiguity over repeat arrays and complete annotation of centromeres revealed additional variation in major cytological landmarks. We show that combining structural variation with single-nucleotide polymorphisms can improve the power of quantitative mapping studies. We also document variation at the level of DNA methylation and demonstrate that unmethylated regions are enriched for cis-regulatory elements that contribute to phenotypic variation.


Assuntos
Genoma de Planta , Anotação de Sequência Molecular , Zea mays/genética , Centrômero/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Metilação de DNA , Resistência à Doença/genética , Genes de Plantas , Variação Genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Herança Multifatorial/genética , Fenótipo , Doenças das Plantas , Polimorfismo de Nucleotídeo Único , Sequências Reguladoras de Ácido Nucleico , Análise de Sequência de DNA , Tetraploidia , Transcriptoma , Sequenciamento Completo do Genoma
20.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33837155

RESUMO

Hermaphroditic (perfect) flowers were a key trait in grapevine domestication, enabling a drastic increase in yields due to the efficiency of self-pollination in the domesticated grapevine (Vitis vinifera L. ssp. vinifera). In contrast, all extant wild Vitis species are dioecious, each plant having only male or female flowers. In this study, we identified the male (M) and female (f) haplotypes of the sex-determining region (SDR) in the wild grapevine species V. cinerea and confirmed the boundaries of the SDR. We also demonstrated that the SDR and its boundaries are precisely conserved across the Vitis genus using shotgun resequencing data of 556 wild and domesticated accessions from North America, East Asia, and Europe. A high linkage disequilibrium was found at the SDR in all wild grape species, while different recombination signatures were observed along the hermaphrodite (H) haplotype of 363 cultivated accessions, revealing two distinct H haplotypes, named H1 and H2. To further examine the H2 haplotype, we sequenced the genome of two grapevine cultivars, 'Riesling' and 'Chardonnay'. By reconstructing the first two H2 haplotypes, we estimated the divergence time between H1 and H2 haplotypes at ∼6 million years ago, which predates the domestication of grapevine (∼8,000 y ago). Our findings emphasize the important role of recombination suppression in maintaining dioecy in wild grape species and lend additional support to the hypothesis that at least two independent recombination events led to the reversion to hermaphroditism in grapevine.


Assuntos
Evolução Molecular , Flores/genética , Recombinação Genética , Vitis/genética , Flores/fisiologia , Genótipo , Vitis/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA